Probabilistic Representation of Weak Solutions of Partial Differential Equations with Polynomial Growth Coefficients
نویسندگان
چکیده
منابع مشابه
Probabilistic Representation of Weak Solutions of Partial Differential Equations with Polynomial Growth Coefficients
In this paper we develop a new weak convergence and compact embedding method to study the existence and uniqueness of the L 2 ρ (R d ; R 1) ⊗ L 2 ρ (R d ; R d) valued solution of backward stochastic differential equations with p-growth coefficients. Then we establish the probabilistic representation of the weak solution of PDEs with p-growth coefficients via corresponding BSDEs.
متن کاملStrong and weak error estimates for the solutions of elliptic partial differential equations with random coefficients
We consider the problem of numerically approximating the solution of an elliptic partial di erential equation with random coe cients and homogeneous Dirichlet boundary conditions. We focus on the case of a lognormal coe cient, we have then to deal with the lack of uniform coercivity and uniform boundedness with respect to the randomness. This model is frequently used in hydrogeology. We approxi...
متن کاملBackward doubly stochastic differential equations with polynomial growth coefficients
In this paper we study the solvability of backward doubly stochastic differential equations (BDSDEs for short) with polynomial growth coefficients and their connections with SPDEs. The corresponding SPDE is in a very general form, which may depend on the derivative of the solution. We use Wiener-Sobolev compactness arguments to derive a strongly convergent subsequence of approximating SPDEs. Fo...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملPolynomial solutions of differential equations
A new approach for investigating polynomial solutions of differential equations is proposed. It is based on elementary linear algebra. Any differential operator of the form L(y) = k=N ∑ k=0 ak(x)y, where ak is a polynomial of degree ≤ k, over an infinite ground field F has all eigenvalues in F in the space of polynomials of degree at most n, for all n. If these eigenvalues are distinct, then th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Probability
سال: 2011
ISSN: 0894-9840,1572-9230
DOI: 10.1007/s10959-011-0350-y